US009473498B2

a2 United States Patent (10) Patent No.: US 9,473,498 B2
Montemayor et al. 45) Date of Patent: Oct. 18, 2016
(54) METHOD FOR USING JAVA SERVLETS AS A (56) References Cited

STACK BASED STATE MACHINE
U.S. PATENT DOCUMENTS

(71) Applicant: Oracle America, Inc., Redwood City,

CA (US 6,005,942 A * 12/1999 Chanetal.cco.c.... 713/187
Us) 7,024,226 B2* 4/2006 Sandberg et al. 455/558
7,085,386 B2* 8/2006 Audebert et al. 380/281
(72) Inventors: Oscar A. Montemayor, San Jose, CA 7,117,364 B1* 10/2006 Hepper et al. 713/176
(US); Matthew R. Hill, San Jose, CA 7,536,722 B1* 52009 Saltz GOGF 21/33
Us 726/20
Us) 7,617,390 B2* 11/2009 Sharma GO06Q 20/341
L . . 380/278
(73) Assignee: Oracle America, Inc., Redwood City, 2002/0100798 Al* 82002 Farrugia et al. 235/380
CA (US) 2002/0112170 Al 82002 Foley et al. 713/184
2004/0167984 Al* 82004 Herrmann 709/229
(*) Notice: Subject to any disclaimer, the term of this 2004/0250066 Al* 12/2004 Di Luoffo et al. 713/168
i 3 2013/0332999 Al* 12/2013 Montemayor GOG6F 9/5027
patent is extended or adjusted under 35
U.S.C. 154(b) by 129 days. 726/4
(21) Appl. No.: 13/967,266 FOREIGN PATENT DOCUMENTS
R EP 1249981 Al 10/2002 ... HO4L 29/06
(22) Filed: Aug. 14, 2013
(65) Prior Publication Data OTHER PUBLICATIONS
US 2013/0332999 A1l Dec. 12, 2013 Chan, “Web-enabled smart card for ubiquitous access of patient’s
medical record”, Computer Networks, Elsevier Science Pub. B.V.,
Related U.S. Application Data Amsterdam, NL, vol. 31, No. 11-16, May 17, 1999, pp. 1591-1598,

XP004304576, ISSN: 1389-1286, DOI: 10,1016/S1389-1286

(63) Continuation of application No. 10/877,350, filed on (1999) 00056-0 p. 1592-1597.

Jun. 25, 2004, now abandoned.

* cited by examiner

(51) Imt.CL
GO6F 15/16 (2006.01)
HO4L 29/06 (2006.01) Primary Examiner — Krisna Lim
GO6F 9/50 (2006.01) (74) Attorney, Agent, or Firm — Martine Penilla Group,
HO4L 9/32 (2006.01) LLP
HO4L 9/00 (2006.01)
HO4N 1/44 (2006.01)
HO4L 29/08 (2006.01) (57 ABSTRACT
(2) US. Cl. A client module downloaded by web browser from a server
CPCcccue. HO4L 63/10 (2013.01); GO6F 9/5027

receives authentication information to open a smart card in
a card reader and to initiate a secure network connection to
a first server module running on a server. The client module
calls a second server module running on the server. And the
client module receives a new application for the smart card.
Then the client module causes the smart card to delete an old

(58) Field of Classification Search application and load the new application. Each of the
CPC . HO4L 63/10; HOAL 63/0853; HOAL 9/0877, operations performed by client module occurs in a single

HO4L 9/3234; HO4L 63/10; HO4L 9/006; session.
HO4L 9/3226; HO4L 29/06802; HO4L 67/14;
HO4L 67/327; GO6F 9/5027
See application file for complete search history. 34 Claims, 4 Drawing Sheets

(2013.01); HO4L 9/006 (2013.01); HO4L
9/3226 (2013.01); HO4L 29/06802 (2013.01);
HO4L 63/00 (2013.01); HO4L 63/0853
(2013.01); HO4L 67/14 (2013.01); HO4L
67/327 (2013.01); HO4N 1/4413 (2013.01)

160

/

164

Level Level 2 Level 3 Level 4
() w
170 ((ontsae Jrm(oeke)
{ersonatzaionH1a-{2P Secure Ch

U.S. Patent Oct. 18, 2016 Sheet 1 of 4 US 9,473,498 B2

102} PAM 110 112
’," Servlet
:-‘-----—--: Stack
. C_)?rd_: o Browser
Card
Reader Client
\ y o)
106
100 104 Server
\
114
122 | | Master
Key | Hsm
\
. 120
Fig. 1

U.S. Patent Oct. 18, 2016 Sheet 2 of 4 US 9,473,498 B2

Receive a request 130
from a browser applet [

v

Check session state variables and 132
execute appropriate functionality [~

134
yes ¢ no
Return "end interaction" command 136 Store state in session 138
to browser applet [state variables [~

Return command and 140
data to browser applet| —

Done L

U.S. Patent Oct. 18, 2016 Sheet 3 of 4 US 9,473,498 B2

Perform local processing [~ 141

Initiate a session with a servlet for 142
service with a back end system [~

*4

Receive data associated with the
service and a command from the |~ 144
back end system Return status and data 152

* to back end system [

Parse command L 146

Control
returned to
browser?

yes

Execute command [~ 150

Perform local processing [~ 154

Fig. 3

U.S. Patent Oct. 18, 2016 Sheet 4 of 4 US 9,473,498 B2
160
Level 1 Level 2 164 Level 3 Level 4
! Main H#{ CheckcuD || 166 168
162 Switch Keys GP Secure Ch.
172
Reprovision GP Secure Ch.
170 >(Get State)——»[Delete]

P'Personalizationl—

P Load File

| Instantiate

GP Secure Ch.

| Gen. keys/cert

Init Card

Fig.

-

US 9,473,498 B2

1
METHOD FOR USING JAVA SERVLETS AS A
STACK BASED STATE MACHINE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of U.S.
patent application Ser. No. 10/877,350, filed on Jun. 25,
2004, also entitled “Method for Using Java Servlets as a
Stack Based State Machine”. This application is related to
U.S. patent application Ser. No. 10/877,743 (now U.S. Pat.
No. 8,447,984), filed on Jun. 25, 2004, entitled “Authenti-
cation System and Method for Operating the Same”, and
U.S. patent application Ser. No. 10/877,842 (now U.S. Pat.
No. 7,617,390), filed on Jun. 25, 2004, entitled “Server
Authentication in Non-Secure Channel Card Pin Reset
Methods and Computer Implemented Processes”. The dis-
closures of all of the above applications are herein incorpo-
rated by reference in their entirety for all purposes.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a client/server
relationship, and more specifically to a client server rela-
tionship where the server drives an applet of the client after
the client initiates communication.

2. Description of the Related Art

In a client server relationship, especially when dealing
with a web server that utilizes the Hyper Text Transport
Protocol (HTTP), the communication scheme is based on a
request-response protocol. The general communication
mechanism for client-server applications is provided by the
Remote Procedure Call (RPC) protocol. Remote procedure
calls provide a framework for implementing remote access
to a system. They create a distributed computing environ-
ment that is established and controlled at the procedure level
within an application. An RPC server consists of a collection
of procedures that a client can call by sending an RPC
request to the server along with the procedure parameters.
The server will invoke the indicated procedure on behalf of
the client, handing back the return value, if there is any.
Thus, the caller, i.e., client, sends a call message and waits
for the reply. On the server side a process is dormant
awaiting the arrival of call messages. When a call message
arrives, the server process extracts the procedure parameters,
computes the results and sends them back in a reply mes-
sage.

However, there may be situations where the server is the
logical driver of the operation. One such example occurs for
provisioning smart cards, such as Java Cards, where the
server determines what should be loaded and invokes the
card operation as needed. The Java 2 Enterprise Edition Java
Servlet API provides an easy, scalable framework that could
be used by a Provisioning Server to talk to a client via HT'TP
or HTTPS protocols. Thus, Java Applets can take advantage
of full browser functionality to talk to the server and the
card, which would be an ideal platform for Web-based
development.

The Java Servlet framework provides a basic HT TP-based
API on top of which to program applications. All HTTP
requests are done either using GET or POST methods. The
Java servlet framework provides methods for such requests
such as doGet (. ..) and doPost (...). By default, both
types of requests are forwarded to a processRequest (. . .)
method. There is one shortcoming with this scheme. HTTP
is a request-response protocol. Accordingly, the server

20

40

45

55

2

always expects a request before issuing a reply with data. In
case of a smart card, the card is also a command-response
device. When provisioning a Java Card, the master key is
located on a hardware security module (HSM) to which the
server has access, but the client does not have access. Due
to this configuration, the Server, the back end system, must
drive the personalization process in the client, the front end
system, after the client has requested the Provisioning
Server to begin its work.

In light of the foregoing, it is desirable to implement a
scheme for allowing a back end system to drive the front end
system.

SUMMARY OF THE INVENTION

Broadly speaking, the present invention fills these needs
by providing a scheme controlling a front end system
through a back end system. The present invention can be
implemented in numerous ways, including as a system, an
apparatus, or a method. Several embodiments of the present
invention are described below.

In one embodiment, a method for driving a client browser
applet from a server is provided. The method initiates with
receiving a request from the client browser applet. The
method includes checking session state variables for a
servlet receiving the request and executing functionality
associated with the request based on information associated
with the session state variables. It is then determined
whether to return control to the client browser applet,
wherein if it is determined not to return control to the client,
the method includes storing a state associated with the
servlet in the session state variables and transmitting both a
command and data to the client browser applet.

In another embodiment, a method for enabling a front end
system applet to be driven by a back end system servlet is
provided. The method includes initiating a session with the
back end system servlet for service. Then, both, data asso-
ciated with the service and a command, are received from
the back end system. Next, the command is parsed. It is then
determined whether control is to be returned to the front end
system applet, wherein if it is determined not to return
control to the front end system applet, the method includes,
executing the command, returning status and data to back
end system, and awaiting receipt of additional data and
command associated with the service from the back end
system.

In yet another embodiment, a computer readable medium
having program instructions for driving a client browser
applet from a server is provided. The computer readable
medium includes program instructions for receiving a
request from the client browser applet. Program instructions
for checking session state variables for a servlet receiving
the request and program instructions for executing function-
ality associated with the request are included. Program
instructions for determining whether to return control to the
client browser applet are included. Program instructions for
storing a state associated with the servlet in the session state
variables and program instructions for transmitting both a
command and data to the client browser applet are provided.

A computer readable medium having program instruc-
tions for enabling a front end system applet to be driven by
a back end system servlet is provided. The computer read-
able medium includes program instructions for initiating a
session with the back end system servlet for service and
program instructions for receiving both, data associated with
the service and a command, from the back end system.

US 9,473,498 B2

3

Program instructions for parsing the command and program
instructions for determining whether control is to be
returned to the front end system applet are included. Pro-
gram instructions for executing the command and program
instructions for returning status and data to the back end
system are provided. Program instructions for awaiting
receipt of additional data and command associated with the
service from the back end system.

Other aspects and advantages of the invention will
become apparent from the following detailed description,
taken in conjunction with the accompanying drawings,
illustrating by way of example the principles of the inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute part of this specification, illustrate exemplary
embodiments of the invention and together with the descrip-
tion serve to explain the principles of the invention.

FIG. 1 is a simplified schematic diagram illustrating a
client-server relationship enabling a server to drive a per-
sonalization process in the client in accordance with one
embodiment of the invention.

FIG. 2 is a flow chart diagram illustrating the method
operations for driving a client browser applet from a server
in accordance with one embodiment of the invention.

FIG. 3 is a flow chart diagram illustrating the method
operations for enabling a front end system applet to be
driven by a back end system servlet in accordance with one
embodiment of the invention.

FIG. 4 is a simplified schematic diagram illustrating how
different servlet calls may be stacked in the system in
accordance with one embodiment of the invention.

DETAILED DESCRIPTION

An invention is described for a system and method for
driving a front end system, i.e., a browser applet of a client,
through a back end system, i.e., a server. It will be obvious,
however, to one skilled in the art, that the present invention
may be practiced without some or all of these specific
details. In other instances, well known process operations
have not been described in detail in order not to unneces-
sarily obscure the present invention.

The embodiments of the present invention provide a
method and protocol for enabling a server to drive a session
between Java servlets running on the server and browser
applets running on the client. Once a browser applet is
downloaded to the browser, e.g., from a provisioning page,
the browser applet invokes a servlet to initiate the corre-
sponding process. The browser will receive data and an
indicator of what task to perform next, e.g., what to request
next from the server, from each procedure call to the servlet.
Thus, the embodiments described herein convert the
browser applet into a passive relay. It should be appreciated
that while the embodiments are at times described below
with reference to provisioning a Java card, this reference is
not meant to limit the embodiments to provisioning a Java
card. That is, the embodiments described herein may be
incorporated into any suitable system where a set of Java
servlets is required to drive an interaction with a client
process.

FIG. 1 is a simplified schematic diagram illustrating a
client-server relationship enabling a server to drive a per-
sonalization process in the client in accordance with one
embodiment of the invention. Here, the client side includes

5

10

15

20

25

30

35

40

45

50

55

60

65

4

client 104 in communication with card reader 100. Card
reader 100 is configured to receive and read card 102. Card
102 may be any suitable card, such as a Java Card. Client
104 includes browser application 106 and pluggable authen-
tication module (PAM) 108. PAM 108 represents custom
code for communication with card 102. One skilled in the art
will appreciate that PAM 108 represents a pluggable frame-
work for UNIX systems to perform authentication. Client
104 is in communication with server 114 through Hyper Text
Transport Protocol/Hyper Text Transport Protocol Secure
sockets (HTTP/HTTPS) connection 110 over distributed
network 112. Of course, distributed network 112 includes
the Internet. Server 114 includes servlet stack 118 and
custom authentication module 116. Custom authentication
module 116 includes the functionality that enables a chal-
lenge/response protocol to be executed between client 104
and server 114. Client 104 and server 114 communicate
through communication channel 110. Some parts of the
between client 104 and server 114 will be performed over a
secure channel, that may be established according to the
Global Platform Specification. When a secure channel is
used, e.g., when provisioning a smart card, it should be
appreciated that the client browser applet acts as a passive
relay and is not an endpoint of the secure channel. Servlet
stack 118 includes a plurality of servlets, some of which may
be provisioning servlets. In one embodiment, the servlets of
servlet stack 118 are organized by function so that they can
be reused. Each servlet can consist of several steps and the
step currently being executed is saved in servlet stack 118.
Server 114 is in communication with hardware security
module (HSM) 120. HSM 120 includes master key 122. One
skilled in the art will appreciate that master key 122 is
required to provision smart card 102 as well as establish
secure channel 110. Of course, server 114 and client 104
include the necessary computing components (hardware and
software) to function as described herein, e.g., processor(s)
and memory.

It should be further appreciated that with reference to the
specific application for provisioning Java card 102, the
client browser does not have access to master key 122 in
HSM 120. Thus, server 114, which has access to master key
122, is configured to drive the session for provisioning card
102, as described in more detail below. In one aspect, the
client browser applet is designed as an interactive compo-
nent that repeatedly calls the servlet in order to advance the
process.

Java Servlets have the ability to keep a state per session.
A state can be stored as state variables, which are preserved
within one session. A session, as used herein, refers to the
interactive dialog between a specific user and a web server,
as the user moves through several web pages. When a
specific user first hits the web server, a session identifier (ID)
value is assigned to a session, which helps the servlet
retrieve state information, referred to as session attributes. In
a specific example with reference to provisioning a Java
card, the user may access a provisioning page which down-
loads a browser applet to the client, thereby causing the
session ID to be assigned. The servlet keeps a state, which
is used to resolve what action to perform next. The applet
keeps a minimum state, and calls the servlet repeatedly to
drive the process. With reference to provisioning a Java
card, the applet is the entity responsible for communicating
with the card in a command-response fashion. The above-
described properties of the servlet enable the client to be
configured to constantly poll the servlet as to what com-
mands to pass to the card, thereby simplifying the client
architecture, i.e., the client may be a thin client. It should be

US 9,473,498 B2

5

appreciated that the fact that the client browser applet keeps
a minimum state further enhances the simplification of the
client design.

In order to keep the client browser applet simple and
flexible, the servlet is the entity that keeps the stack. Thus,
the client browser applet is provided information for which
servlet to call when receiving data from the servlet stack. In
the embodiment for provisioning a Java card, a protocol of
commands between the applet and the servlet is established.
Exemplary commands that perform the following tasks are
listed below:

a) Send Application Protocol Data Units (APDUs) to the

card, and return data to the servlet;

b) Change servlet to be called to another specified servlet;

¢) Display images/messages to the user;

d) End servlet interaction, and return control to the applet;

e) Query the user for a card personal identification num-

ber (PIN).

The above list of commands is not meant to be limiting, as
the commands are exemplary. That is, any suitable addi-
tional commands for communication between the applet and
the servlet may be incorporated into the protocol of com-
mands depending on the application. In one embodiment,
the ADPUs correspond to ISO7816-4 ADPUs. It should be
appreciated that the protocol described herein can be imple-
mented via serialized command objects, whose classes are
accessible by both applet and servlets. Return data can be
sent from the applet to the servlet using standard HTTP
variables, which the servlet is responsible for decoding.
Since the applet state is kept to a minimum for design
simplification, the servlet is responsible for handling any
errors returned by the card.

FIG. 2 is a flow chart diagram illustrating the method
operations for driving a client browser applet from a server
in accordance with one embodiment of the invention. FIG.
2 represents a view from the server side of FIG. 1. The
method initiates with operation 130 where a request from a
browser applet is received. For example, the browser of a
client and a server may be in communication according to
the remote procedure call protocol. As described above, a
smart card may be provisioned through these embodiments.
The method then advances to operation 132 where session
state variables are checked and the appropriate functionality
is executed. Examples of functionality being executed
include the servlet receiving a provisioning request with a
SSO token identifying the user and the card CUID, and the
servlet checking its configuration to determine what must be
provisioned. For example, the servlet might access the
card’s master key from the HSM, make requests to other
servers such as a certificate authority, and then use that
information to set up a secure channel with the card via the
browser applet in order to perform the following: delete
some specified card applets, load one or more new card
applets, request the newly loaded card applet to generate a
PKI keypair, etc.

In decision operation 134 of FIG. 2, it is determined
whether to return control to the client browser applet. If it is
determined to return control to the client browser applet, the
method advances to operation 136 where an “end interac-
tion” command is returned to the browser applet from the
server. If it is determined not to return control to the client,
then the method moves to operation 138 where the corre-
sponding state is stored in the session state variables. The
method then proceeds to operation 140 where a command
and data are returned to the browser applet. Here, the
command includes instructions on what the client browser
applet is to perform next. It should be noted that the

10

15

20

25

30

35

40

45

50

55

60

65

6

commands listed in the protocol of commands above are
exemplary commands that may be included here. After
operation 140 the method returns to operation 30 and repeats
as described above.

FIG. 3 is a flow chart diagram illustrating the method
operations for enabling a front end system applet to be
driven by a back end system servlet in accordance with one
embodiment of the invention. It should be appreciated that
FIG. 3 represents the client side view. The method initiates
with operation 141 where local processing is performed. For
example, with reference to a Java card application, the
browser applet may request a PIN from the user to open the
card. It should be appreciated that the local processing of
operation 141 is optional and does not necessarily need to be
performed if there is no local processing to be executed. The
method then advances to operation 142 where a session is
initiated with a servlet for service with a back end system.
Here, a request is submitted to the server from the client. The
method then advances to operation 144 where data associ-
ated with the service and a command from the back end
system is received by the browser applet. Thus, the server
responds to the request with data and a command, such as
the commands listed above. The method then moves to
operation 146 where the command of operation 144 is
parsed to determine what the command is. It should be
appreciated that the command represents instructions on
how to handle the data received in operation 144.

The method of FIG. 3 then moves to decision operation
148 where it is determined whether control is to be returned
to the front end system applet, i.e., the browser. If it is
determined not to return control to the front end system
applet, the method moves to operation 150 where the
command is executed. It should be appreciated that during
the execution of the command, local processing is not
allowed except for a response to a limited set of preset
command options. Following execution of the command,
the method advances to operation 152 where a status and
data is returned to the back end system. For example, one
APDU exchange brokered by the browser applet has the
servlet request the card applet to generate a key pair, and to
return the public key to the servlet. Alternatively, the servlet
might request the card applet to encrypt some data with its
private key and return the result. Once the status and data are
returned to the back end system, the method returns to
operation 144 and repeats as described above. If control is
to be returned to the browser, i.e., a command equal to “end
processing,” then the method advances to operation 154
where local processing may be performed. For example,
with reference to a Java card application, the browser applet
may close the card in response to the end processing
command. As above with reference to operation 141, the
performance of local processing is optional.

FIG. 4 is a simplified schematic diagram illustrating how
different servlet calls may be stacked in the system in
accordance with one embodiment of the invention. Here, a
number of servlets are depicted in levels one through four,
which represent levels of nesting of the stack in diagram
160. For example, main servlet 162 is the first invocation
that the browser applet would make. When main servlet 162
is executing and gets to a point where the main servlet needs
to call another servlet, e.g., check card unique identifier
(CUID) servlet 164, then main servlet 162 pushes itself onto
the servlet stack. It should be appreciated that the servlet
stack may be embodied as a session variable configured as
a list. Thus, an identifier representing main servlet 162 is
added to the list. Thus, an identifier for main servlet 162 is
at the top of the list (at this point it is the only identifier in

US 9,473,498 B2

7

the list) and the identifier would communicate to the browser
applet to call check CUID servlet 164. As check CUID
servlet 164 does not advance to any further levels in the
nesting, check CUID servlet communicates to the browser
applet to call main servlet 162, which then directs the
browser applet to call switch keys servlet 166. It should be
appreciated that check CUID servlet 164 identifies main
servlet 162 to be called when check CUID servlet is done,
as the identifier for the main servlet is at the top of the list.

Switch keys servlet 166 goes one level deeper, i.e., pushes
itself onto the top of the stack and communicates to the
browser applet to call Global Platform (GP) secure channel
servlet 168. GP secure channel servlet 168 sets up the
APDUs that set up the secure channel. In the case of
provisioning a Java card, the secure channel is established
between a card applet and GP secure channel servlet 168.
While GP secure channel servlet 168 is executing, there are
two servlets on the stack, i.e., switch keys servlet 166 at the
top and main servlet 162 below. GP secure channel servlet
168 is not necessarily aware of whether there is more work
to do in switch keys servlet 166, so the GP secure channel
“pops” the top entry off of the servlet stack, i.e., the switch
keys servlet, and directs the browser applet to contact the
Switch keys servlet. The browser applet will contact switch
keys servlet 166, which has saved session state, and switch
keys will continue it’s processing with the browser applet
until the processing is complete. At completion of process-
ing switch keys servlet 166 will pop the next entry off the
stack, i.e., Main servlet 162, and direct the browser applet to
invoke Main. Main servlet 162 also has saved session state
and directs the browser applet to contact reprovision servlet
170 after pushing itself on the stack. Reprovision servlet 170
pushes itself onto the top of the stack and communicates to
the browser applet to call GP secure channel servlet 172. The
remaining servlets of diagram 160 execute in a similar
fashion to the scheme described above and are shown for
exemplary purposes.

In summary, the present invention provides a scheme for
having a back end system drive the interaction with a client
process. Thus, Java servlets operating on a request/response
paradigm are enabled to drive the interaction with the client.
Here, the browser applet acts as a state machine that sends
its state to the servlet stack and then moves from one state
to the next, i.e., the browser applet acts as an intermediary
allowing to drive the interaction with the clients. It should be
further appreciated that the secure channel mentioned above
with reference to provisioning a Java card is a logical
connection between the servlet and a card applet with the
client browser applet acting a passive relay. The secure
channel may be set up for secure communications, such as
provisioning a card, however, the secure channel is not
needed for non-secure communications.

With the above embodiments in mind, it should be under-
stood that the invention may employ various computer-
implemented operations involving data stored in computer
systems. These operations include operations requiring
physical manipulation of physical quantities. Usually,
though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, trans-
ferred, combined, compared, and otherwise manipulated.
Further, the manipulations performed are often referred to in
terms, such as producing, identitying, determining, or com-
paring.

The above described invention may be practiced with
other computer system configurations including hand-held
devices, microprocessor systems, microprocessor-based or
programmable consumer electronics, minicomputers, main-

10

15

20

25

30

35

40

45

50

55

60

65

8

frame computers and the like. The invention may also be
practiced in distributing computing environments where
tasks are performed by remote processing devices that are
linked through a communications network.
The invention can also be embodied as computer readable
code on a computer readable medium. The computer read-
able medium is any data storage device that can store data
which can be thereafter read by a computer system. The
computer readable medium also includes an electromagnetic
carrier wave in which the computer code is embodied.
Examples of the computer readable medium include hard
drives, network attached storage (NAS), read-only memory,
random-access memory, CD-ROMs, CD-Rs, CD-RWs,
magnetic tapes, and other optical and non-optical data
storage devices. The computer readable medium can also be
distributed over a network coupled computer system so that
the computer readable code is stored and executed in a
distributed fashion.
Although the foregoing invention has been described in
some detail for purposes of clarity of understanding, it will
be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. Accord-
ingly, the present embodiments are to be considered as
illustrative and not restrictive, and the invention is not to be
limited to the details given herein, but may be modified
within the scope and equivalents of the appended claims. In
the claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.
What is claimed is:
1. A method, comprising the operations of:
using authentication information to open a smart card in
a card reader and to initiate a secure network connec-
tion to a first server module running on a server;

calling a second server module running on the server,
wherein the second server module is a reprovision
module identified in a command received from another
server module running on the server;

receiving a new application for the smart card; and

causing the smart card to delete an old application and

load the new application, wherein each of the opera-
tions is performed in a single session by a client module
downloaded by a web browser from the server and
wherein the client module executes on one or more
processors.

2. The method of claim 1, further comprising the opera-
tion of:

instructing the new application to generate a Public Key

Infrastructure (PKI) keypair.

3. The method of claim 1, wherein the authentication
information includes information from a personal identifi-
cation number (PIN) entered by a user.

4. The method of claim 1, wherein the authentication
information includes a card unique ID (CUID) received
from the smart card.

5. The method of claim 1, wherein the authentication
information is obtained at least in part through the use of a
pluggable authentication module (PAM).

6. The method of claim 1, wherein the secure network
connection is based at least in part on a master key for the
smart card stored in a hardware security module (HSM) on
the server.

7. The method of claim 1, wherein the applications are
applets and the server modules are servlets.

8. The method of claim 1, wherein the client module is an
applet.

9. The method of claim 1, wherein the authentication
information includes information from a personal identifi-

US 9,473,498 B2

9

cation number (PIN) entered by a user, wherein the authen-
tication information is obtained at least in part through the
use of a pluggable authentication module (PAM), and
wherein the client module and the applications are applets
and the server modules are servlets.

10. One or more computer-readable media that are non-
transitory and that store a program, wherein the program,
when executed, instructs a processor to perform the follow-
ing operations:

use authentication information to open a smart card in a

card reader and to initiate a secure network connection
to a first server module running on a server;

call a second server module running on the server,

wherein the second server module is a reprovision
module identified in a command received from another
server module running on the server;

receive a new application for the smart card; and

cause the smart card to delete an old application and load

the new application, wherein each of the operations is
performed in a single session by a client module
downloaded by a web browser from the server.

11. The computer-readable media of claim 10, further
comprising the operation of:

instructing the new application to generate a Public Key

Infrastructure (PKI) keypair.

12. The computer-readable media of claim 10, wherein
the authentication information includes information from a
personal identification number (PIN) entered by a user.

13. The computer-readable media of claim 9, wherein the
authentication information includes a card unique ID
(CUID) received from the smart card.

14. The computer-readable media of claim 10, wherein
the authentication information is obtained at least in part
through the use of a pluggable authentication module
(PAM).

15. The computer-readable media of claim 10, wherein
the secure network connection is based at least in part on a
master key for the smart card stored in a hardware security
module (HSM) on the server.

16. The computer-readable media of claim 10, wherein
the applications are applets and the server modules are
servlets.

17. The computer-readable media of claim 10, wherein
the client module is an applet.

18. The computer-readable media of claim 10, wherein
the authentication information includes information from a
personal identification number (PIN) entered by a user,
wherein the authentication information is obtained at least in
part through the use of a pluggable authentication module
(PAM), and wherein the client module and the applications
are applets and the server modules are servlets.

19. A method, comprising the operations of:

using authentication information to open a smart card in

a card reader and to initiate a secure network connec-
tion to a first servlet running on a server;

calling a second servlet running on the server, wherein the

second servlet is a reprovision module identified in a
command received from another server module run-
ning on the server;

receiving a new applet for the smart card; and

causing the smart card to delete an old applet and load the

new applet, wherein each of the operations is per-
formed in a single session by a client module down-
loaded by a web browser from the server and wherein
the client module executes on one or more processors.

20. The method of claim 19, wherein the client module is

an applet.

10

15

20

25

30

35

40

45

50

55

60

65

10

21. The method of claim 19, further comprising the
operation of:

instructing the new applet to generate a Public Key

Infrastructure (PKI) keypair.

22. The method of claim 19, wherein the authentication
information includes information from a personal identifi-
cation number (PIN) entered by a user.

23. The method of claim 19, wherein the authentication
information includes a card unique ID (CUID) received
from the smart card.

24. The method of claim 19, wherein the authentication
information is obtained at least in part through the use of a
pluggable authentication module (PAM).

25. The method of claim 19, wherein the secure network
connection is based at least in part on a master key for the
smart card stored in a hardware security module (HSM) on
the server.

26. The method of claim 19, wherein the authentication
information includes information from a personal identifi-
cation number (PIN) entered by a user, wherein the authen-
tication information is obtained at least in part through the
use of a pluggable authentication module (PAM), and
wherein the client module is an applet.

27. One or more computer-readable media that are non-
transitory and that store a program, wherein the program,
when executed, instructs a processor to perform the follow-
ing operations:

use authentication information to open a smart card in a

card reader and to initiate a secure network connection
to a first servlet running on a server;

call a second servlet running on the server, wherein the

second servlet is a reprovision module identified in a
command received from another server module run-
ning on the server;

receive a new applet for the smart card; and

cause the smart card to delete an old applet and load the

new applet, wherein each of the operations is per-
formed in a single session by a client module down-
loaded by a web browser from the server.

28. The computer-readable media of claim 27, wherein
the client module is an applet.

29. The computer-readable media of claim 27, further
comprising the operation of:

instruct the new applet to generate a Public Key Infra-

structure (PKI) keypair.

30. The computer-readable media of claim 27, wherein
the authentication information includes information from a
personal identification number (PIN) entered by a user.

31. The computer-readable media of claim 27, wherein
the authentication information includes a card unique 1D
(CUID) received from the smart card.

32. The computer-readable media of claim 27, wherein
the authentication information is obtained at least in part
through the use of a pluggable authentication module
(PAM).

33. The computer-readable media of claim 27, wherein
the secure network connection is based at least in part on a
master key for the smart card stored in a hardware security
module (HSM) on the server.

34. The computer-readable media of claim 27, wherein
the authentication information includes information from a
personal identification number (PIN) entered by a user,
wherein the authentication information is obtained at least in
part through the use of a pluggable authentication module
(PAM), and wherein the client module is an applet.

#* #* #* #* #*

